Contents

Shape sensitivity of energy

Applications

Fracture problems

For simplicity, let $\Pi $ be a plane.
Crack growth along the plane $\Pi $ and the mapping $x\mapsto \Phi _h(x)$
Let $h$ be a $C^1$-function defined on the edge $\partial \Sigma $ of the crack $\Sigma $ given in Section 2.2.2 . Using the geodesic coordinate, we define $\mathcal{E}(v;h)=\tilde{\mathcal{E}}(v;f,g,\Phi _h)$, $\Phi _h(x)=x+h(\gamma (\mathcal{P}(x)))e_{\partial \Sigma ,1}(\gamma (\mathcal{P}(x)))\beta (x)$ where $\beta $ is the cut-off function such that $\beta (x)=1$ at a point $x$ in a neighborhood of $\partial \Sigma $ included in $U(\partial \Sigma )$ given in Section 2.2.2 . Applying Theorem 2.10 to fracture problem with $\mathcal{V}=\{v\in H^1(\Omega ;\mathbb{R}^d):\,v=0~~ \textrm{on }\Gamma _D\}$, $\mathcal{O}=C^1(\partial \Sigma )$, $\varphi =th$ and $\varphi _0=0$, we have \begin{eqnarray*} \frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))|_{t=0}&=& -R_{\Omega }(u,\mu _h) \Omega (t)=D\setminus \Phi _{th}(\Sigma )\\ \mu _h&=&h(\gamma (\mathcal{P}(x)))e_{\partial \Sigma ,1}(\gamma (\mathcal{P}(x))\beta (x) \end{eqnarray*}
At the point $x$ near $\partial \Sigma $, $\mu _h(x)=h(\gamma (\mathcal{P}(x)))e_{\partial \Sigma ,1}(\gamma (\mathcal{P}(x)))$ is the Parallel extension of the vector filed $h(\gamma )e_{\partial \Sigma ,1}(\gamma ), \gamma \in \partial \Sigma $ with the speed $h$. If $\| h\|_{C^1(\partial \Sigma )}$ is large, let $\epsilon h$ be $h$ with sufficiently small $\epsilon \gt 0$.
Let $\omega _0$ be a neiborhood of $\Sigma $, then $J_{\Omega \setminus \overline{\omega _0}}(u,\mu _h)=0$ since $\Phi _{th}(x)=x$ on $\partial D$ and $u$ has the interior regularity so that \begin{eqnarray*} R_{\Omega }(u,\mu _h)&=&R_{\Omega \setminus \overline{\omega _0}}(u,\mu _h) +R_{\omega _0}(u,\mu _h)\\ &=&-P_{\Omega \setminus \overline{\omega _0}}(u,\mu _h) +R_{\omega _0}(u,\mu _h)=J_{\omega _0}(u,\mu _h |\partial \omega _0). \end{eqnarray*} Let $\omega $ be a neighborhood of $\partial \Sigma $.
Neighbourhoods $\omega _0, \omega $ of the crack front $\partial \Sigma $ and the vector field $\mu _h$
Since $u |_{\omega _0\setminus \overline{\omega }}$ is regular except for the direction crossing $\Sigma $, $\widehat{T}^±(u)=0$ and $\mu _h\cdot n=0$ on $\Sigma $, we arrive at \begin{equation} \mathcal{G}(f,g,\Sigma _h(\cdot ))=J_{\omega }(u,\mu _h |\partial \omega )\left (\int _{\partial \Sigma }h(\gamma )d\gamma \right )^{-1}, \Sigma _h(\cdot ):=\{\Phi _{th}(\Sigma )\} _{t\in [0,\epsilon ]} \tag{2.44} \end{equation} which is another proof of Theorem 2.7 .

top


Notes
Surface not flat
Similar results are obtained if we notice that on a plane, the shortest line connecting two points is a straight line, but on a general surface, the shortest line is a geodesic. By using geodesic coordinate, a point $x$ near the crack front $\partial \Sigma $ is expressed as $x=\mathcal{P}(x)+\lambda _3(x)e_{\partial \Sigma ,3}(\mathcal{P}(x))$, $\mathcal{P}(x)=g_{\Sigma }(e_{\partial \Sigma ,1}(\gamma (x)),\lambda _1(x))$. Here $[\lambda \mapsto g_{\Sigma }(e_{\partial \Sigma ,1}(\gamma (x)),\lambda )], 0\le \lambda \le \lambda _1(x)$ is the geodesic line passing through $\mathcal{P}(x)$ and crossing $\partial \Sigma $ in the direction $e_{\partial \Sigma ,1}(\gamma (x))$ at $\gamma (x)$ as shown below. Now, we define \begin{equation*} \Phi _h(x):=\mathcal{P}_{h\beta }(x)+\lambda _3(x)e_{\partial \Sigma ,3}(\mathcal{P}_{h\beta }(x)) \end{equation*} where $\mathcal{P}_{h\beta }(x):=g_{\Sigma }(e_{\partial \Sigma ,1}(\gamma (x)),\lambda _1(x)+h(\gamma (x))\beta (x))$ with a cut-off function $\beta $ near $\partial \Sigma $. If $x\notin \textrm{supp}_{\Pi }\beta $, then $$ \mathcal{P}_{h\beta }(x)=g_{\Sigma }(e_{\partial \Sigma ,1}(\gamma (x)),\lambda _1(x))=\mathcal{P}(x)$$ that is, $\Phi _h(x)=\mathcal{P}(x)+\lambda _3(x)e_{\partial \Sigma ,3}(\mathcal{P}(x))=x$, which means that $\Phi _h$ is defined at $x\in \mathbb{R}^d$.
$\mu _h(x)$ is the parallel transport (e.g., [Def.7.4.8, Pr10]) from $\gamma (x)$ to $\mathcal{P}(x)$ along the geodesic, and parallel to its normal when $x$ is near $\partial \Sigma $.
In [Oh81], the product neighborhood $(U,p)$ [Lemma 4.2, Oh81] was used, but for clarity of the geometric image, the geodesic coordinate system was used here. In [Oh81], it is also shown that the the velocity vector of the energy release rate is independent of $(U,p)$ [Lemma 5.3, Oh81].
product neighborhood $(U,p)$ subordinate to the crack front $\partial \Sigma $

top

J-integral revisited
Consider the elasticity $\sigma _{ij}(\xi ,u)=C_{ijkl}(\xi )\varepsilon _{kl}(u)$ with $C_{ijkl}(\xi )$ depends on $\xi \in \Omega \subset \mathbb{R}^2$. $\Sigma :=\{(x_1,0): -a\le x_1\le 0\}$, $\Omega :=D\setminus \Sigma $.$\widehat{W}(\xi ,\varepsilon (u)):=\sigma (\xi ,u):\varepsilon (u)/2$
For a given $f\in L^2(\Omega ;\mathbb{R}^2), g\in L^2(\Gamma _N;\mathbb{R}^2)$, find $u\in V(\Omega )$ such that \begin{eqnarray*} \mathcal{E}(u;f,g,\Omega )&=&\min _{v\in V(\Omega )} \mathcal{E}(v;f,g,\Omega )\notag \\ \mathcal{E}(v;f,g,\Omega )&:=& \int _{\Omega }\{\widehat{W}(x,\varepsilon (v))-f\cdot v\} dx -\int _{\Gamma _N}g\cdot v~ds\\ V(\Omega _{\Sigma })&:=& \{v\in H^1(\Omega ;\mathbb{R}^2):v=0~\textrm{on }\Gamma _D\} \end{eqnarray*}
Crack growth $\Sigma (t)=\{(x_1,0):0\le x_1\le \ell (t)\}$ at time $t$.
Since the bilinear forms $a_{\Sigma (t)}(v,w):=\int _{\Omega (t)}\sigma (x,v):\varepsilon (w)dx, \Omega (t)=D\setminus \Sigma (t)$ are coercive on $V(\Omega _{\Sigma (t)})$ and $(f,g)\mapsto u(t)$ are bounded operator from $L^2(\Omega ;\mathbb{R}^2)\times L^2(\Gamma _N;\mathbb{R}^2)$ to $V(\Omega (t))$, we obtain from the similar argument in [Oh81] with $\varphi _t(x)=x+e_1\ell (t)\beta $ \begin{equation} -\left .\frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))\right |_{t=0} =R_{\Omega }(u,\ell '(0) e_1\beta )\tag{2.A1} \end{equation} Therefore, the energy release rate $$ \mathcal{G}(f,g,\Sigma (\cdot )):=\lim _{t→+0}\ell (t)^{-1}[\mathcal{E}(u;f,g,\Omega )-\mathcal{E}(u(t);f,g,\Omega (t))]$$ become the following from (2.A1) \begin{eqnarray} \mathcal{G}(f,g,\Sigma (\cdot ))&=&-\left .\frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))\right |_{t=0}(\ell '(0))^{-1}\notag \\ &=&R_{\Omega }(u,\ell '(0) e_1\beta )(\ell '(0))^{-1}=R_{\Omega }(u,e_1\beta )\tag{2.A2} \end{eqnarray} In Bui[Bu04], (2.A2) is called G-theta integral, and it is written that (2.A2) has been independently given by Ohtsuka (1981)[Oh81], deLorenzi (1982)[Lo82], Destuynder and Djaoua (1981)[D-D81].Also,in [Kn06, Kh-So99], (2.A2) is called Griffith formulaand [Kn-Mi08] for finite elasticity.

top

Curve crack growth
(a) Crack tips $\gamma $ and $\phi _t(\gamma )$ (b) Parametrization $\rho $ of $\Pi $ by arc length
Consider the curve crack growth based on the idea of 3D problem[Oh81].
(1)
Let $[\lambda _1\mapsto \rho (\lambda _1)]$ be the parametrization of $\Pi $ by arc length such as $\gamma =\rho (0)$, $\rho (\lambda _1)\in \Sigma $ if $\lambda _1\le 0$ and $\rho (\lambda _1)\notin \Sigma $ if $\lambda _1 \gt 0$.
(2)
Put $\phi _t(\gamma )=\rho (\ell (t))$. Take a neighbourhood $U(\gamma )$ of $\gamma $ such that the foot of the perpendicular to $\Pi $ from $x\in U(\gamma )$ is uniquely $\rho (\lambda _1(x))\in \Pi $, that is, $x=\rho (\lambda _1(x))+\lambda _3(x)\nu (\rho (\lambda _1(x))$.
(3)
$\varphi _t(x)=\rho (\lambda _1(x)+\ell (t)\beta (x))+\lambda _3(x)\nu (\rho (\lambda _1(x)+\ell (t)\beta (x))$ with a cut-off function $\beta $ near $\gamma $, $\textrm{supp}\beta \subset U(\gamma )$.
(a) Neighborhood $U(\gamma )$ and the map $[x\mapsto \varphi _t(x)]$ (b) Vector field $\mu _C$ obtained by parallel extension from crack growth
\begin{eqnarray} \mathcal{G}(f,g,\Sigma (\cdot ))&=&-\left .\frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))\right |_{t=0}(\ell '(0))^{-1}\notag \\ &=&R_{\Omega }(u,\mu _C\beta )(\ell '(0))^{-1}\tag{2.A5} \end{eqnarray} Unfortunately, (2.A5) does not hold if $\Sigma $ grows at an angular bend (see Crack Path ).

Information about the page: The current position is painted circle in the diagram below. Blue is the main MaKR and orange is a duplicate for MaKR's public use, where dashed line means the connection to the private area The dashed lines are only connections to main MaKR.

Top

top


[Adams] R.A.Adams, Sobolev spaces, Academic Press, 1975.
[A-P06] G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct. Multidiscip. Opt, 32 (2006), 173--181.
[Al07] G. Allaire, Conception optimale de structures, Springer, 2007.
[Az94] H. Azegami, Solution to domain optimization problems, Trans. Japan Soc. Mech. Engrs. Series A, 60, No.574 (1994), 1479--1486. (in Japanese)
[A-W96] H. Azegami and Z. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, JSME Inter. J. Series A, 39 (1996), 272--278.
[Az17] H. Azegami. Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 83--98.
[B-S04] M.P. Bends{\o }e and O. Sigmund, Topology optimization: theory, methods, and applications, Springer, 2004.
[Bu04] H.D. Bui, Fracture mechanics -- Inverse problems and solutions, Springer, 2006.
[Ch67] G.P. Cherepanov, On crack propagation in continuous media, Prikl. Math. Mekh., 31 (1967), 476--493.
[Cir88] P.G. Ciarlet, Mathematical elasticity: Three-dimensional elasticity, North-Holland, 1988.
[Co85] R. Correa and A. Seeger, Directional derivative of a minimax function. Nonlinear Anal., 9(1985), 13--22.
[D-Z88] M.C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control and Optim., 26(1988), 834--862.
[D-D81] Ph. Destuynder and M. Djaoua, Sur une interprétation de l'intégrale de Rice en théorie de la rupture fragile. Math. Meth. in Appl. Sci., 3 (1981), 70--87.
[E-G04] A. Em and J.-L. Guermond, Theory and practice of finite elements, Springer, 2004.
[Es56] J.D. Eshelby, The Continuum theory of lattice defects, Solid State Physics, 3 (1956), 79--144.
[F-O78] D. Fujiwara and S. Ozawa, The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad., 54 (1978), 215--220.
[G-S52] P.R. Garabedian and M. Schiffer, Convexity of domain functionals, J.Anal.Math., 2 (1952), 281--368.
[Gr21] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London, Series A 221 (1921), 163--198.
[Gr24] A.A. Griffith, The theory of rupture, Proc. 1st.Intern. Congr. Appl. Mech., Delft (1924) 55--63.
[Gr85] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, 1985.
[Gr92] P. Grisvard, Singularities in boundary value problems, Springer, 1992.
[Had68] J. Hadamard, Mémoire sur un problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoire des savants étragers, 33 (1907), 515--629.
[Hau86] E.J. Haug, K.K. Choi and V. Komkov, Design sensitivity analysis of structural systems, Academic Press, 1986.
[ffempp] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012), 251--265. 65Y15, (FreeFem++ URL:http://www.freefem.org)
[Kato] T. Kato, Perturbation theory for linear operators, Springer, 1980.
[Kh-So99] A.M.Khludnev and J.Sokolowski. The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains. Eur. J. Appl. Math. 10(1999), 379---394.
[K-W06] M. Kimura. and I. Wakano, New mathematical approach to the energy release rate in crack extension, Trans. Japan Soc. Indust. Appl. Math., 16(2006) 345--358. (in Japanese)
[K-W11] M. Kimura and I. Wakano, Shape derivative of potential energy and energy release rate in rracture mechanics, J. Math-for-industry, 3A (2011), 21--31.
[Kne05] D. Knees, Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains: boundary, transmission and crack problems. PhD thesis, Universität Stuttgart, 2005. http://elib.uni-stuttgart.de/opus/volltexte/2005/2191/.
[Kn06] D. Knees, Griffith-formula and J-integral for a crack in a power-law hardening material. Math. Models Meth. Appl. Sci., 16(2006), 1723--1749.
[Kn-Mi08] D.Knees and A,Mielke, Energy release rate for cracks in finite-strain elasticity, Math. Meth. Appl. Sci.31,2008, 501--528.
[Ko06] V.A. Kovtunenko, Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration, IMA Jour. Appl. Math. 71 (2006), 635--657.
[K-O18] V.A. Kovtunenko and K. Ohtsuka, Shape differentiability of Lagrangians and application to stokes problem, SIAM J. Control Optim. 56 (2018), 3668--3684.
[Lo82] H.G. deLorenzi, On the energy release rate and the J-integral for 3-D crack configurations. Int.. J. Fracture 19 (1982), 183-193.
[M-P01] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press, 2001.
[Na94] S.Nazarov and B.A.Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics 13. Walter de Gruyter \& Co., 1994.
[Nec67] J. Nečas, Direct methods in the theory of elliptic equations, Springer, 2012. Translated from ``Méthodes directes en théorie des équations elliptiques, 1967, Masson''.
[Noe18] E. Noether, Invariante variationsprobleme, göttinger nachrichten, Mathematisch-Physikalische Klasse (1918), 235--257.
[N-S13] A.A. Novotny and J. Sokolowski, Topological derivatives in shape optimization, Springer, 2013.
[Oh81] K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I, Hiroshima Math. J., 11(1981), 21--52.
[Oh85] K. Ohtsuka, Generalized J-integral and its applications. I. -- Basic theory, Japan J. Appl. Math., 2 (1985), 329--350.
[O-K00] K. Ohtsuka and A. Khludnev, Generalized J-integral method for sensitivity analysis of static shape design, Control \& Cybernetics, 29 (2000), 513--533.
[Oh02] K. Ohtsuka, Comparison of criteria on the direction of crack extension, J. Comput. Appl. Math., 149 (2002), 335--339.
[Oh02-2] K. Ohtsuka, Theoretical and numerical analysis on 3-dimensional brittle fracture, Mathematical Modeling and Numerical Simulation in Continuum Mechanics, Springer, 2002, 233--251.
[Oh09] K. Ohtsuka, Criterion for stable/unstable quasi-static crack extension by extended griffith energy balance theory, Theor. Appl. Mech. Japan, 57 (2009), 25--32.
[Oh12] K. Ohtsuka, Shape optimization for partial differential equations/system with mixed boundary conditions, RIMS K\^oky\^uroku 1791 (2012), 172--181.
[OT-K12] K. Ohtsuka and M. Kimura, Differentiability of potential energies with a parameter and shape sensitivity analysis for nonlinear case: the p-Poisson problem, Japan J. Indust. Appl. Math., 29 (2012), 23--35.
[Oh14] K. Ohtsuka and T. Takaishi, Finite element anaysis using mathematical programming language FreeFem++, Kyoritsu Shuppan, 2014. (in Japanese)
[Oh17] K. Ohtsuka, Shape optimization by GJ-integral: Localization method for composite material, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 73--109.
[Oh18] K. Ohtsuka, Shape optimization by Generalized J-integral in Poisson's equation with a mixed boundary condition, Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Springer, 2018, 73--83.
[Pr10] A.N. Pressley, Elementary differential geometry, Springer, 2010.
[Ri68] J.R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35(1968), 379--386.
[Ri68-2] J.R. Rice, Mathematical analysis in the mechanics of fracture, Fracture Volume II, Academic Press, 1968, 191--311.
[Pi84] O. Pironneau, Optimal shape design for elliptic systems, Springer-Verlag, 1984.
[Sa99] J.A. Samareh, A survey of shape parameterization techniques, NASA Report CP-1999-209136 (1999), 333--343.
[Sc91] B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, North-Holland, 1991.
[Sok92] J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization, Springer, 1992.
[St14] K. Sturm, On shape optimization with non-linear partial differential equations, Doctoral thesis, Technische Universiltät of Berlin, 2014. https://d-nb.info/106856959X/34
[Sumi] Y. Sumi, Mathematical and computational analyses of cracking formation, Springer, 2014.
[Zei/2B] E. Zeidler. Nonlinear functional analysis and its applications II/B, Springer, 1990.
[Z-S73] O.C. Zienkiewicz and J.S. Campbell, Shape optimization and sequential linear programming, Optimum Structural Design, Wiley, 1973, 109--126.

top