Contents

Shape sensitivity of energy

Crack problems, J-integral, and GJ-integral

Griffith's energy balance theory

In the 2-dimensional case, cracks are curves and a smooth crack extension $\{\Sigma (t)\}$ along a curve $\Pi $ is defined more simply (does not need the geodesic coordinate), and $\partial \Sigma (t)$ is the set of points (crack tip). Let $\Sigma _0$ be the initial crack. Griffith's criterion [Gr21, Gr24]: Crack propagation occurs when there is a crack extension $\Sigma (t)\supset \Sigma _0$ such that $$ \mathcal{G}(f,g,\Sigma (\cdot ))\ge C_F$$ where the constant $C_F$ is called the fracture toughness value. Here, it is not necessary to know the actual crack extension $\Sigma ^*(t)$, because the actual crack extension must satisfy $\mathcal{G}(f,g,\Sigma ^*(\cdot ))\ge \mathcal{G}(f,g,\Sigma (\cdot ))$. Therefore, for a line crack, the risk of cracking can be evaluated by calculating the J-integral (2.16a) (see [Oh09] for more).
 

Notes
The energy criterion proposed by Griffith can be said that “If the excessive energy is sufficient enough to break the material bonding so as to create the new crack surfaces, fracture takes place.”[4.1, Sumi].

top

Griffith's criterion
The discussion here is based on Bui[2.1 Griffith's theory of fracture, Bui04]. During a crack growth of the length amount $\ell (t)$, the energy required for fracture is $C_F\ell (t)$. Griffith suppose that the total energy does not change. $$ \mathcal{E}(u(t);f,g,\Omega (t))+\mathcal{E}_k(u(t);\Omega (t))+C_F\ell (t)=0$$ where $\mathcal{E}_k(u(t);\Omega (t))$ is kinetic energy. Suppose that an equilibrium state is reached for the stationary crack $\Sigma $, with the extemal load $(f,g)$ so that any infinitesimal change of the equilibrium state with $\ell (t) \gt 0$ under $\mathcal{E}_k(u(t);\Omega (t)) = 0$ implies $$ \mathcal{E}(u(t);f,g,\Omega (t))+C_F\ell (t)=0$$ This is the criterion of crack initiation at the equilibrium state of the solid at rest just at some critical load, which means \begin{eqnarray} \left .\frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))\right |_{t=0}+C_F\ell '(0)&=&0\notag \\ -\left .\frac{d}{dt}\mathcal{E}(u(t);f,g,\Omega (t))\right |_{t=0}&=&C_F\ell '(0)\notag \\ \mathcal{G}(f,g,\Sigma (\cdot ))&=&C_F\tag{2.A3} \end{eqnarray} Defining the quasi-static energy release rate $\mathcal{G}=C_F$, one gets the crack initiation criterion as $\mathcal{G}=C_F$. Crack propagation under $\mathcal{E}_k(u(t);\Omega (t)) = 0$ is called a controlled or stable propagation. By using (2.A2), the crack initiation criterion (2.A3) is  \begin{equation} R_{\Omega }(u,e_1 \beta )=C_F\tag{2.A4} \end{equation} Personal additions. If $R_{\Omega }(u,e_1 beta) \lt C_F$, then we have from (2.A2) for small $t$ $$ \mathcal{E}(u;f,g,\Omega )-\mathcal{E}(u(t);f,g,\Omega (t)) \lt C_F\ell (t)$$ which means that the energy required to realise virtual crack growth cannot be supplied. In other words, if $R_{\Omega }(u,e_1 \beta ) \lt C_F$, the crack cannot grow. If $R_{\Omega }(u,e_1 \beta ) \gt C_F$, then we have for small $t$ \begin{eqnarray*} \mathcal{E}_k(u(t);\Omega (t))-\mathcal{E}_k(u;\Omega ) &=&\mathcal{E}(u;f,g,\Omega )-\mathcal{E}(u(t);f,g,\Omega (t))-C_F\ell (t)\\ & \gt &0 \end{eqnarray*} which can be transformed in either kinetic energy or fracture energy to provide an additional propagation or both energies.

top

Information about the page: The current position is painted circle in the diagram below. Blue is the main MaKR and orange is a duplicate for MaKR's public use, where dashed line means the connection to the private area The dashed lines are only connections to main MaKR.

Top

top


[Adams] R.A.Adams, Sobolev spaces, Academic Press, 1975.
[A-P06] G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct. Multidiscip. Opt, 32 (2006), 173--181.
[Al07] G. Allaire, Conception optimale de structures, Springer, 2007.
[Az94] H. Azegami, Solution to domain optimization problems, Trans. Japan Soc. Mech. Engrs. Series A, 60, No.574 (1994), 1479--1486. (in Japanese)
[A-W96] H. Azegami and Z. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, JSME Inter. J. Series A, 39 (1996), 272--278.
[Az17] H. Azegami. Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 83--98.
[B-S04] M.P. Bends{\o }e and O. Sigmund, Topology optimization: theory, methods, and applications, Springer, 2004.
[Bu04] H.D. Bui, Fracture mechanics -- Inverse problems and solutions, Springer, 2006.
[Ch67] G.P. Cherepanov, On crack propagation in continuous media, Prikl. Math. Mekh., 31 (1967), 476--493.
[Cir88] P.G. Ciarlet, Mathematical elasticity: Three-dimensional elasticity, North-Holland, 1988.
[Co85] R. Correa and A. Seeger, Directional derivative of a minimax function. Nonlinear Anal., 9(1985), 13--22.
[D-Z88] M.C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control and Optim., 26(1988), 834--862.
[D-D81] Ph. Destuynder and M. Djaoua, Sur une interprétation de l'intégrale de Rice en théorie de la rupture fragile. Math. Meth. in Appl. Sci., 3 (1981), 70--87.
[E-G04] A. Em and J.-L. Guermond, Theory and practice of finite elements, Springer, 2004.
[Es56] J.D. Eshelby, The Continuum theory of lattice defects, Solid State Physics, 3 (1956), 79--144.
[F-O78] D. Fujiwara and S. Ozawa, The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad., 54 (1978), 215--220.
[G-S52] P.R. Garabedian and M. Schiffer, Convexity of domain functionals, J.Anal.Math., 2 (1952), 281--368.
[Gr21] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London, Series A 221 (1921), 163--198.
[Gr24] A.A. Griffith, The theory of rupture, Proc. 1st.Intern. Congr. Appl. Mech., Delft (1924) 55--63.
[Gr85] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, 1985.
[Gr92] P. Grisvard, Singularities in boundary value problems, Springer, 1992.
[Had68] J. Hadamard, Mémoire sur un problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoire des savants étragers, 33 (1907), 515--629.
[Hau86] E.J. Haug, K.K. Choi and V. Komkov, Design sensitivity analysis of structural systems, Academic Press, 1986.
[ffempp] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012), 251--265. 65Y15, (FreeFem++ URL:http://www.freefem.org)
[Kato] T. Kato, Perturbation theory for linear operators, Springer, 1980.
[K-W06] M. Kimura. and I. Wakano, New mathematical approach to the energy release rate in crack extension, Trans. Japan Soc. Indust. Appl. Math., 16(2006) 345--358. (in Japanese) \bibitem {K-W11} M. Kimura and I. Wakano, Shape derivative of potential energy and energy release rate in rracture mechanics, J. Math-for-industry, 3A (2011), 21--31.
[Kne05] D. Knees, Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains: boundary, transmission and crack problems. PhD thesis, Universität Stuttgart, 2005. http://elib.uni-stuttgart.de/opus/volltexte/2005/2191/.
[Ko06] V.A. Kovtunenko, Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration, IMA Jour. Appl. Math. 71 (2006), 635--657.
[K-O18] V.A. Kovtunenko and K. Ohtsuka, Shape differentiability of Lagrangians and application to stokes problem, SIAM J. Control Optim. 56 (2018), 3668--3684.
[M-P01] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press, 2001.
[Na94] S.Nazarov and B.A.Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics 13. Walter de Gruyter \& Co., 1994.
[Nec67] J. Nečas, Direct methods in the theory of elliptic equations, Springer, 2012. Translated from ``Méthodes directes en théorie des équations elliptiques, 1967, Masson''.
[Noe18] E. Noether, Invariante variationsprobleme, göttinger nachrichten, Mathematisch-Physikalische Klasse (1918), 235--257.
[N-S13] A.A. Novotny and J. Sokolowski, Topological derivatives in shape optimization, Springer, 2013.
[Oh81] K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I, Hiroshima Math. J., 11(1981), 21--52.
[Oh85] K. Ohtsuka, Generalized J-integral and its applications. I. -- Basic theory, Japan J. Appl. Math., 2 (1985), 329--350.
[O-K00] K. Ohtsuka and A. Khludnev, Generalized J-integral method for sensitivity analysis of static shape design, Control \& Cybernetics, 29 (2000), 513--533.
[Oh02] K. Ohtsuka, Comparison of criteria on the direction of crack extension, J. Comput. Appl. Math., 149 (2002), 335--339.
[Oh02-2] K. Ohtsuka, Theoretical and numerical analysis on 3-dimensional brittle fracture, Mathematical Modeling and Numerical Simulation in Continuum Mechanics, Springer, 2002, 233--251.
[Oh09] K. Ohtsuka, Criterion for stable/unstable quasi-static crack extension by extended griffith energy balance theory, Theor. Appl. Mech. Japan, 57 (2009), 25--32.
[Oh12] K. Ohtsuka, Shape optimization for partial differential equations/system with mixed boundary conditions, RIMS K\^oky\^uroku 1791 (2012), 172--181.
[OT-K12] K. Ohtsuka and M. Kimura, Differentiability of potential energies with a parameter and shape sensitivity analysis for nonlinear case: the p-Poisson problem, Japan J. Indust. Appl. Math., 29 (2012), 23--35.
[Oh14] K. Ohtsuka and T. Takaishi, Finite element anaysis using mathematical programming language FreeFem++, Kyoritsu Shuppan, 2014. (in Japanese)
[Oh17] K. Ohtsuka, Shape optimization by GJ-integral: Localization method for composite material, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 73--109.
[Oh18] K. Ohtsuka, Shape optimization by Generalized J-integral in Poisson's equation with a mixed boundary condition, Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Springer, 2018, 73--83.
[Pr10] A.N. Pressley, Elementary differential geometry, Springer, 2010.
[Ri68] J.R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35(1968), 379--386.
[Ri68-2] J.R. Rice, Mathematical analysis in the mechanics of fracture, Fracture Volume II, Academic Press, 1968, 191--311.
[Pi84] O. Pironneau, Optimal shape design for elliptic systems, Springer-Verlag, 1984.
[Sa99] J.A. Samareh, A survey of shape parameterization techniques, NASA Report CP-1999-209136 (1999), 333--343.
[Sc91] B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, North-Holland, 1991.
[Sok92] J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization, Springer, 1992.
[St14] K. Sturm, On shape optimization with non-linear partial differential equations, Doctoral thesis, Technische Universiltät of Berlin, 2014. https://d-nb.info/106856959X/34
[Sumi] Y. Sumi, Mathematical and computational analyses of cracking formation, Springer, 2014.
[Zei/2B] E. Zeidler. Nonlinear functional analysis and its applications II/B, Springer, 1990.
[Z-S73] O.C. Zienkiewicz and J.S. Campbell, Shape optimization and sequential linear programming, Optimum Structural Design, Wiley, 1973, 109--126.

top