Contents

Shape sensitivity of energy

GJ-integral

Let $\omega \subset \mathbb{R}^d$ be a domain with Lipschitz property and consider the vector $\mu \in W^{1,\infty }(\mathbb{R}^d;\mathbb{R}^d)$. For the solution $u$ in (2.1) , the GJ-integral $J_{\omega }(u,\mu )$ is defined by \begin{eqnarray} J_{\omega }(u,\mu )&:=&P_{\omega }(u,\mu )+R_{\omega }(u,\mu ), \tag{2.5a} \end{eqnarray} \begin{eqnarray} P_{\omega }(u,\mu )& :=&\int _{\partial (\omega \cap \Omega )}\left \lbrace \widehat{W}(u)(\mu \cdot n)-\widehat{T}(u)(\nabla u\cdot \mu )\right \} \,ds, \tag{2.5b} \end{eqnarray} \begin{eqnarray} R_{\omega }(u,\mu )& :=&-\int _{\omega \cap \Omega }\left \lbrace \nabla _{\xi }\widehat{W}(u)\cdot \mu +f(\nabla u\cdot \mu )\right \} dx\notag \\ && +\int _{\omega \cap \Omega }\left \{ \nabla _{\zeta }\widehat{W}(u):[\nabla u\nabla \mu ]-\widehat{W}(u)\,\textrm{div}\mu \right \} \,dx, \notag \tag{2.5c} \end{eqnarray} \begin{eqnarray} \widehat{T}(u)&:=&(\widehat{T}_{i}(u))_{i=1,…, m}, \widehat{T}_i(u)=\sum _{j=1}^d [\partial \widehat{W}(u)/\partial \zeta _{ij}]n_j, \notag \tag{2.5d} \end{eqnarray} where $n=(n_1,…,n_d)$ is the ourward unit normal vector to $\partial (\omega \cap \Omega )$. For a set $B$ we also use the notation \begin{eqnarray} P_{\omega }(u,\mu |B)& :=&\int _{\partial (\omega \cap \Omega )\cap B}\left \lbrace \widehat{W}(u)(\mu \cdot n)-\widehat{T}(u)(\nabla u\cdot \mu )\right \} \,ds \tag{2.6} \end{eqnarray} and $J_{\omega }(u,\mu |B):=P_{\omega }(u,\mu |B)+R_{\omega }(u,\mu )$. Sometimes we use $P_{\omega }(u,\mu |\partial \omega )$ whose integration region do not contain $\omega \cap \partial \Omega $, because $\omega \cap \partial \Omega \subset \partial (\omega \cap \Omega )\setminus (\partial \omega \cap \Omega )$.
Poisson equation
The GJ-integral of the Poisson equation $-\Delta u=f$ is \begin{eqnarray} P_{\omega }(u,\mu )&=& \int _{\partial (\omega \cap \Omega )}\left \{\frac{1}{2}|\nabla u |^2(\mu \cdot n)-\frac{\partial u}{\partial n}(\nabla u\cdot \mu )\right \} ds\notag \\ R_{\omega }(u,\mu )&=&- \int _{\omega \cap \Omega }\left \lbrace f(\nabla u\cdot \mu )-(\nabla u\cdot \nabla \mu _k)\partial _k u+\frac{1}{2}|\nabla u |^2\textrm{div }\mu \right \} dx \tag{2.7} \end{eqnarray}
Linear elasticity
The GJ-integral of linear elasticity is \begin{eqnarray*} P_{\omega }(u,\mu ) &=&\int _{\partial (\omega \cap \Omega )}\left \{ \frac{1}{ 2}\sigma _{ij}(u)e_{ij}(u)(\mu \cdot n)-\sigma _{ij}n_{j}(\nabla u_{i}\cdot \mu )\right \} ds \\ R_{\omega }(u,\mu ) &=&-\int _{\omega \cap \Omega }\left \{ \frac{1}{2}(\mu \cdot \nabla C_{ijkl})e_{kl}(u)e_{ij}(u)+f_{i}(\nabla u_{i}\cdot \mu )\right . \\ &&-\left . \sigma _{ij}(u)\partial _{j}\mu _{k}\partial _{k}u_{i}+ \frac{1}{2}\sigma _{ij}(u)e_{ij}(u)\textrm{div}\mu \right \} dx \end{eqnarray*} $R_{\omega }(u,\mu )$ is finite for all weak solutions $u$, but $P_{\omega }(u,\mu )$ need regurality of $u$ to be finite. We now prove (GJ-2), and (GJ-1) can be seen from the proof.
GJ=0 if u is regular
Theorem 2.2
If the weak solution $u$ is regular inside $\omega $ and $\omega \cap \Omega $ is the domain with the Lipschitz property, then \begin{equation} J_\omega (u,\mu )=0~~\textrm{for all } \mu \in W^{1,\infty }(\mathbb{R}^d;\mathbb{R}^d) \tag{2.9} \end{equation}
Proof  Since $u |_{\omega \cap \Omega }\in H^2(\omega \cap \Omega ;\mathbb{R}^d)$, $\nabla _x\widehat{W}(x,u(x),\nabla u(x))\cdot \mu (x)$ is written by the chain rule as follows \begin{eqnarray} && \nabla _{\xi }\widehat{W}(u)\cdot \mu + \widehat{W}_z(u)(\nabla u\cdot \mu )+\nabla _{\zeta }\widehat{W}(u):[\nabla (\nabla u)\cdot \mu ]\notag \\ && =\nabla _{\xi }\widehat{W}(u)\cdot \mu +\widehat{W}_{z}(u)(\nabla u\cdot \mu )\notag \\ &&    + \nabla _{\zeta }\widehat{W}(u):[\nabla (\nabla u\cdot \mu )] -\nabla _{\zeta }\widehat{W}(u):[\nabla u\nabla \mu ]\notag \tag{2.10} \end{eqnarray} Using divergence theorem, we have \begin{eqnarray} \int _{\omega \cap \Omega }\nabla _x\widehat{W}(u)\cdot \mu \, dx &=&\int _{\partial (\omega \cap \Omega )}\widehat{W}(u)(\mu \cdot n)\,ds\notag \\ &&-\int _{\omega \cap \Omega }\widehat{W}(u)\textrm{div}\mu \, dx \tag{2.11} \end{eqnarray} Since $u$ is regular inside $\omega $, we have by Green's formula \begin{eqnarray} &&\int _{\omega \cap \Omega }\left \{\widehat{W}_z(u)(\nabla u\cdot \mu )+ \nabla _{\zeta }\widehat{W}(u):[\nabla (\nabla u\cdot \mu )]\right \} dx\notag \\ &&    =\int _{\partial (\omega \cap \Omega )}\widehat{T}(x,u)(\nabla u\cdot \mu )ds +\int _{\omega \cap \Omega }\left [ -\textrm{div}\nabla _{\zeta }\widehat{W}(u)+\widehat{W}_z(u)\right ](\nabla u\cdot \mu )dx\notag \\ &&    = \int _{\partial (\omega \cap \Omega )}\widehat{T}(u)(\nabla u\cdot \mu )ds+\int _{\omega \cap \Omega }f(\nabla u\cdot \mu )dx\notag \tag{2.12} \end{eqnarray} Here we used (2.4) . Combining (2.10) ,(2.11) and (2.12) , we arrive at (2.9) .  ∎
Domain independence

Corollary 2.3
Let $\omega _1,\omega _2$ be two domains such that $\overline{\omega _1}\subset \omega _2$. If $u$ is regular inside $(\omega _2\setminus \overline{\omega _1})\cap \Omega $, and $(\omega _2\setminus \overline{\omega _1})\cap \Omega $ has the Lipschitz property, then $J_{\omega _1}(u,\mu )=J_{\omega _2}(u,\mu )$.
GJ-integral using cut-off

Corollary 2.4
Let $\omega $ be an open set such that $\omega \cap \Omega $ has the Lipschitz property and $\beta _{\omega }\in C^\infty _0(\mathbb{R}^d)$ the cut-off function that is $\beta _{\omega }(x)=1$ for all $x\in \omega ; \beta _{\omega }\ge 0$ and $\beta _{\omega }(x)=0$ for all $x\in \mathbb{R}^d\setminus \overline{\omega _1}$ with an open set $\omega _1, \overline{\omega }\subset \omega _1$. If $u$ is regular inside $\omega _1\setminus \overline{\omega }$, then \begin{equation} J_{\omega }(u;\mu )=R_{\omega _1}(u;\beta _{\omega }\mu )~~ \textrm{for all }\mu \in W^{1,\infty }(\mathbb{R}^d;\mathbb{R}^d) \tag{2.13} \end{equation}
It is easy to show (2.13) by Corollary and $P_{\omega _1}(u;\beta _{\omega }\mu )=0$.
The weak solution $u$ has `interior regularity' if $u |_{\omega }$ is in $H^2(\omega ;\mathbb{R}^m)$ and satisfy (2.4) for an arbitrary $\omega $ such that $\overline{\omega }\subset \Omega $.
Limit when GJ = 0
In crack problems, there is a solution $u\in H^{3/2-\epsilon }(\Omega ;\mathbb{R}^2), \epsilon \gt 0$ such that $J_{\omega }(u,e_1)\neq 0$ in (2.20) , but if the solution $u$ of (2.1) has more smoothness, we can show the following using the Trace theorem [2.4, Nec67].
Theorem 2.6
If the weak solution $u$ has interior regularity, and $\omega \cap \Omega $ is the domain with the Lipschitz property and $u_{\omega \cap \Omega }\in H^{\alpha }(\omega \cap \Omega ;\mathbb{R}^m)$ for any $\alpha \gt 3/2$, then \begin{equation} J_\omega (u,\mu )=0~~\textrm{for all } \mu \in W^{1,\infty }(\mathbb{R}^d;\mathbb{R}^d) \tag{2.14} \end{equation}
See [Oh18] for the proof of Theorem 2.6 .
(a)
The solution $u$ of the Poisson equation with Dirichlet boundary condiotion in the polygonal domain is $u\in H^{\alpha }(\Omega ), \alpha \gt 3/2$, so $J_{\Omega }(u.\mu )=0$ [Gr92].
(b)
There is a solution $u$ of the Poisson equation with Mixed boundary condiotion and the crack such that $J_{\omega _i}(u,(-1)^{i-1}e_1)\neq 0, i=1,2$ and $J_{\omega _i}(u,\mu )\neq 0$, $e_1(1,0)$.
(c)
If $\overline{\Omega }\subset \omega $, then $J_{\omega }(u,\mu ):=R_{\Omega }(u,\mu )$.

Information about the page: The current position is painted circle in the diagram below. Blue is the main MaKR and orange is a duplicate for MaKR's public use, where dashed line means the connection to the private area The dashed lines are only connections to main MaKR.

Top

Reference

top


[Adams] R.A.Adams, Sobolev spaces, Academic Press, 1975.
[A-P06] G. Allaire and O. Pantz, Structural optimization with FreeFem++, Struct. Multidiscip. Opt, 32 (2006), 173--181.
[Al07] G. Allaire, Conception optimale de structures, Springer, 2007.
[Az94] H. Azegami, Solution to domain optimization problems, Trans. Japan Soc. Mech. Engrs. Series A, 60, No.574 (1994), 1479--1486. (in Japanese)
[A-W96] H. Azegami and Z. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, JSME Inter. J. Series A, 39 (1996), 272--278.
[Az17] H. Azegami. Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 83--98.
[B-S04] M.P. Bends{\o }e and O. Sigmund, Topology optimization: theory, methods, and applications, Springer, 2004.
[Bu04] H.D. Bui, Fracture mechanics -- Inverse problems and solutions, Springer, 2006.
[Ch67] G.P. Cherepanov, On crack propagation in continuous media, Prikl. Math. Mekh., 31 (1967), 476--493.
[Cir88] P.G. Ciarlet, Mathematical elasticity: Three-dimensional elasticity, North-Holland, 1988.
[Co85] R. Correa and A. Seeger, Directional derivative of a minimax function. Nonlinear Anal., 9(1985), 13--22.
[D-Z88] M.C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control and Optim., 26(1988), 834--862.
[D-D81] Ph. Destuynder and M. Djaoua, Sur une interprétation de l'intégrale de Rice en théorie de la rupture fragile. Math. Meth. in Appl. Sci., 3 (1981), 70--87.
[E-G04] A. Em and J.-L. Guermond, Theory and practice of finite elements, Springer, 2004.
[Es56] J.D. Eshelby, The Continuum theory of lattice defects, Solid State Physics, 3 (1956), 79--144.
[F-O78] D. Fujiwara and S. Ozawa, The Hadamard variational formula for the Green functions of some normal elliptic boundary value problems, Proc. Japan Acad., 54 (1978), 215--220.
[G-S52] P.R. Garabedian and M. Schiffer, Convexity of domain functionals, J.Anal.Math., 2 (1952), 281--368.
[Gr21] A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London, Series A 221 (1921), 163--198.
[Gr24] A.A. Griffith, The theory of rupture, Proc. 1st.Intern. Congr. Appl. Mech., Delft (1924) 55--63.
[Gr85] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, 1985.
[Gr92] P. Grisvard, Singularities in boundary value problems, Springer, 1992.
[Had68] J. Hadamard, Mémoire sur un problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoire des savants étragers, 33 (1907), 515--629.
[Hau86] E.J. Haug, K.K. Choi and V. Komkov, Design sensitivity analysis of structural systems, Academic Press, 1986.
[ffempp] F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012), 251--265. 65Y15, (FreeFem++ URL:http://www.freefem.org)
[Kato] T. Kato, Perturbation theory for linear operators, Springer, 1980.
[K-W06] M. Kimura. and I. Wakano, New mathematical approach to the energy release rate in crack extension, Trans. Japan Soc. Indust. Appl. Math., 16(2006) 345--358. (in Japanese) \bibitem {K-W11} M. Kimura and I. Wakano, Shape derivative of potential energy and energy release rate in rracture mechanics, J. Math-for-industry, 3A (2011), 21--31.
[Kne05] D. Knees, Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains: boundary, transmission and crack problems. PhD thesis, Universität Stuttgart, 2005. http://elib.uni-stuttgart.de/opus/volltexte/2005/2191/.
[Ko06] V.A. Kovtunenko, Primal-dual methods of shape sensitivity analysis for curvilinear cracks with nonpenetration, IMA Jour. Appl. Math. 71 (2006), 635--657.
[K-O18] V.A. Kovtunenko and K. Ohtsuka, Shape differentiability of Lagrangians and application to stokes problem, SIAM J. Control Optim. 56 (2018), 3668--3684.
[M-P01] B. Mohammadi and O. Pironneau, Applied shape optimization for fluids. Oxford University Press, 2001.
[Na94] S.Nazarov and B.A.Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics 13. Walter de Gruyter \& Co., 1994.
[Nec67] J. Nečas, Direct methods in the theory of elliptic equations, Springer, 2012. Translated from ``Méthodes directes en théorie des équations elliptiques, 1967, Masson''.
[Noe18] E. Noether, Invariante variationsprobleme, göttinger nachrichten, Mathematisch-Physikalische Klasse (1918), 235--257.
[N-S13] A.A. Novotny and J. Sokolowski, Topological derivatives in shape optimization, Springer, 2013.
[Oh81] K. Ohtsuka, Generalized J-integral and three dimensional fracture mechanics I, Hiroshima Math. J., 11(1981), 21--52.
[Oh85] K. Ohtsuka, Generalized J-integral and its applications. I. -- Basic theory, Japan J. Appl. Math., 2 (1985), 329--350.
[O-K00] K. Ohtsuka and A. Khludnev, Generalized J-integral method for sensitivity analysis of static shape design, Control \& Cybernetics, 29 (2000), 513--533.
[Oh02] K. Ohtsuka, Comparison of criteria on the direction of crack extension, J. Comput. Appl. Math., 149 (2002), 335--339.
[Oh02-2] K. Ohtsuka, Theoretical and numerical analysis on 3-dimensional brittle fracture, Mathematical Modeling and Numerical Simulation in Continuum Mechanics, Springer, 2002, 233--251.
[Oh09] K. Ohtsuka, Criterion for stable/unstable quasi-static crack extension by extended griffith energy balance theory, Theor. Appl. Mech. Japan, 57 (2009), 25--32.
[Oh12] K. Ohtsuka, Shape optimization for partial differential equations/system with mixed boundary conditions, RIMS K\^oky\^uroku 1791 (2012), 172--181.
[OT-K12] K. Ohtsuka and M. Kimura, Differentiability of potential energies with a parameter and shape sensitivity analysis for nonlinear case: the p-Poisson problem, Japan J. Indust. Appl. Math., 29 (2012), 23--35.
[Oh14] K. Ohtsuka and T. Takaishi, Finite element anaysis using mathematical programming language FreeFem++, Kyoritsu Shuppan, 2014. (in Japanese)
[Oh17] K. Ohtsuka, Shape optimization by GJ-integral: Localization method for composite material, Mathematical Analysis of Continuum Mechanics and Industrial Applications, Springer, 2017, 73--109.
[Oh18] K. Ohtsuka, Shape optimization by Generalized J-integral in Poisson's equation with a mixed boundary condition, Mathematical Analysis of Continuum Mechanics and Industrial Applications II, Springer, 2018, 73--83.
[Pr10] A.N. Pressley, Elementary differential geometry, Springer, 2010.
[Ri68] J.R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35(1968), 379--386.
[Ri68-2] J.R. Rice, Mathematical analysis in the mechanics of fracture, Fracture Volume II, Academic Press, 1968, 191--311.
[Pi84] O. Pironneau, Optimal shape design for elliptic systems, Springer-Verlag, 1984.
[Sa99] J.A. Samareh, A survey of shape parameterization techniques, NASA Report CP-1999-209136 (1999), 333--343.
[Sc91] B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, North-Holland, 1991.
[Sok92] J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization, Springer, 1992.
[St14] K. Sturm, On shape optimization with non-linear partial differential equations, Doctoral thesis, Technische Universiltät of Berlin, 2014. https://d-nb.info/106856959X/34
[Sumi] Y. Sumi, Mathematical and computational analyses of cracking formation, Springer, 2014.
[Zei/2B] E. Zeidler. Nonlinear functional analysis and its applications II/B, Springer, 1990.
[Z-S73] O.C. Zienkiewicz and J.S. Campbell, Shape optimization and sequential linear programming, Optimum Structural Design, Wiley, 1973, 109--126.

top